skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "He, Qiwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent studies show increasing interest in using process data (e.g., response time, response actions) to enhance measurement accuracy for respondents’ latent traits. Yet, few have explored the possibility of incorporating process information into cognitive diagnostic models (CDMs). This study proposes a novel CDM approach that utilizes a four-component joint modeling approach with response action sequences (i.e., similarity and efficiency), response time, and item responses. We employed the Markov Chain Monte Carlo method for parameter estimation and evaluated the performance of the proposed model using both an empirical study and two simulation studies. The results suggest that the process data can improve respondents’ classification accuracy under varied conditions and support the interpretation of the association between process and response data. 
    more » « less
    Free, publicly-accessible full text available May 9, 2026
  2. Computerized assessments and interactive simulation tasks are increasingly popular and afford the collection of process data, i.e., an examinee’s sequence of actions (e.g., clickstreams, keystrokes) that arises from interactions with each task. Action sequence data contain rich information on the problem-solving process but are in a nonstandard, variable-length discrete sequence format. Two methods that directly extract features from the raw action sequences, namely multidimensional scaling and sequence-to-sequence autoencoders, produce multidimensional numerical features that summarize original sequence information. This study explores the utility of action sequence features in understanding how problem-solving behavior relates to cognitive proficiencies and demographic characteristics. This is empirically illustrated with the process data from the 2012 PIAAC PSTRE digital assessment. Regularized regression results showed that action sequence features are more predictive of examinees’ demographic and cognitive characteristics compared to final outcomes. Partial least squares analysis further aided the identification of behavioral patterns systematically associated with demographic/cognitive characteristics. 
    more » « less
  3. Abstract Complex interactive test items are becoming more widely used in assessments. Being computer-administered, assessments using interactive items allow logging time-stamped action sequences. These sequences pose a rich source of information that may facilitate investigating how examinees approach an item and arrive at their given response. There is a rich body of research leveraging action sequence data for investigating examinees’ behavior. However, the associated timing data have been considered mainly on the item-level, if at all. Considering timing data on the action-level in addition to action sequences, however, has vast potential to support a more fine-grained assessment of examinees’ behavior. We provide an approach that jointly considers action sequences and action-level times for identifying common response processes. In doing so, we integrate tools from clickstream analyses and graph-modeled data clustering with psychometrics. In our approach, we (a) provide similarity measures that are based on both actions and the associated action-level timing data and (b) subsequently employ cluster edge deletion for identifying homogeneous, interpretable, well-separated groups of action patterns, each describing a common response process. Guidelines on how to apply the approach are provided. The approach and its utility are illustrated on a complex problem-solving item from PIAAC 2012. 
    more » « less
  4. null (Ed.)
    International large-scale assessments (ILSAs) transitioned from paper-based assessments to computer-based assessments (CBAs) facilitating the use of new item types and more effective data collection tools. This allows implementation of more complex test designs and to collect process and response time (RT) data. These new data types can be used to improve data quality and the accuracy of test scores obtained through latent regression (population) models. However, the move to a CBA also poses challenges for comparability and trend measurement, one of the major goals in ISLAs. We provide an overview of current methods used in ILSAs to examine and assure the comparability of data across different assessment modes and methods that improve the accuracy of test scores by making use of new data types provided by a CBA. 
    more » « less